Regio- and enantio-selective Heck reactions of aryl and alkenyl triflates with the new chiral ligand (R)-BITIANP

Lutz F. Tietze,*a Kai Thedea and Franco Sannicolòb

- ^a Institut f\(\tilde{u}\) Organische Chemie der Universit\(\tilde{a}\) Tammannstra\(\beta\)e 2, D-37077 G\(\tilde{o}\)ttingen, Germany.
 E-mail: \(\tilde{t}\)itetze\(\tilde{\tilde{g}}\)gwdg.de
- ^b Dipartimento di Chimica Inorganica, Metallorganica e Analitica, Università di Milano, Via Venezian 21, I-20133 Milano, Italy

Received (in Liverpool, UK) 29th June 1999, Accepted 29th July 1999

The Heck reaction of dihydrofuran 3 with aryl triflates 4 and 6a–d and alkenyl triflate 8 in the presence of the chiral ligand (*R*)-BITIANP 1 provides the 2-substituted 2,3-dihydrofurans 5a, 7a–d and 9, respectively, with complete regioselectivity, high enantioselectivity (86–96% ee) and good yields (76–93%).

One of the main objectives in modern synthetic organic chemistry is the catalytic enantioselective formation of C-C bonds. In this respect, the Heck reaction¹—the Pd⁰ catalyzed coupling of an aryl or alkenyl halide or triflate with an alkene is a highly versatile procedure since it tolerates several functional groups. In the years since the first enantioselective Heck reactions in 1989, published by Shibasaki² and Overman,³ several novel chiral ligands have been developed which give high enantioselectivities and which have been used in natural product syntheses.4 However, one of the problems encountered in the use of chiral ligands, especially in intermolecular Heck reactions, is the often low reactivity of the formed Pd complexes.⁵ Therefore it is important to develop novel ligands and show their applicability in C-C bond formation. Here we report on the use of the new chiral ligands (R)-(+)-2,2'-bis(diphenylphosphino)-3,3'-bi(benzo[b]thiophene) [(R)-BI-TIANP] 1 and (+)-4,4'-bis(diphenylphosphino)-2,2',5,5'-tetramethyl-3,3'-bithiophene [(+)-TMBTP] 2 in Heck reactions; ligand 1 has been employed with great success in the hydrogenation of C-C and C-O bonds, 6 whereas ligand 2 has not been used so far for enantioselective transformations.

To allow a comparison with other chiral ligands we investigated the Heck reactions of dihydrofuran 3 with the

triflates **4**, **6a–d** and **8**. In principle, the Heck reaction of dihydrofuran **3** with phenyl triflate **4** leads to the two isomers **5a** and **5b** (Scheme 1). Using BINAP⁷ the regioselectivity is rather low, whereas with a substituted MeO-BIPHEP⁸ ligand a 22:1 ratio of **5a** and **5b** was obtained, and with chiral phosphino-oxazolines⁹ only **5b** is obtained.¹⁰

We have now shown that the Heck reaction of **3** and **4** in DMF at 90 °C using Pd₂dba₃·dba and the new chiral ligand **1** employing a Pd ligand ratio of 1:2 and 1,8-bis(dimethylamino)-naphthalene (proton sponge) as the base affords **5a** exclusively in 84% yield and 91% ee within 18 h (Table 1, entry 1).† Similar results were obtained using Pri₂NEt as base (entry 2); however, with THF as solvent at 70 °C the transformation was less selective and much slower. Even after 7 days the reaction was not complete (entry 3). Interestingly, (*R*)-BINAP as chiral ligand using the best conditions found for the transformation with **1** gave **5a** with a 3:1 regioselectivity and only 42% ee (entry 4). The use of the second new ligand (+)-TMBTP **2** was only marginally successful. Here the regioisomer **5b** was obtained preferentially, but with very poor ee values (entries 5–7).

In the presence of the ligand (*R*)-BITIANP 1, other phenyl triflates **6a-d** containing either an electron-withdrawing or an electron-donating group also reacted with high regio- and enantio-selectivities (Scheme 2, Table 2). In addition alkenyl triflates could be transformed successfully; thus, the Pd catalyzed reaction of cyclohex-1-enyl triflate 8 with dihydrofuran 3 provides exclusively the dihydrofuran derivative 9 within 13 h with good yield and high enantioselectivity.

The described Heck reactions with the new chiral ligand (R)-BITIANP 1 have shown that this ligand has an excellent potency and may serve as a useful alternative to the ligands

 $Table\ 1\ {\hbox{Enantioselective Heck reactions of 3 and 4 providing 5a and 5b}}$

	Pd ₂ dba ₃ ·dba/ mol%	Ligand (mol%)	Base (equiv.)	Solvent	T/°C	t	Conversion ^a (4:5a + 5b)	Ratio ^a 5a:5b	Yield (%)		Ee $(\%)^b$	
									5a	5b	5a	5b
1	3	BITIANP 1 (12)	PS (3) ^c	DMF	90	18 h	<1:100	100: <1	84	_	91	
2	3	BITIANP 1 (12)	Pr ⁱ ₂ NEt (3)	DMF	90	20 h	< 1:100	100: <1	90	_	90	
3	5	BITIANP 1 (10)	Pr ₂ NEt (3)	THF	70	7 d	16:84	7:1	62	_	80	
4	3	BINAP (12)	PS (3)c	DMF	90	18 h	<1:100	3:1	58	20	42	33
5	5	TMBTP 2 (10)	Pr ⁱ 2NEt (3).	DMF	90	3 d	< 1:100	1:2	27	58	4	2
6	5	TMBTP 2 (10)	Pri ₂ NEt (3)	THF	70	4 d	1:22	3:1	54	19	14	10
7	5	TMBTP 2 (10	PS (3)c	C_6H_6	70	4 d	1:26	6:1	73	12	4	0

^a Determined by GC. ^b Determined by chiral GC. ^c PS = Proton sponge = 1,8-bis(dimethylamino)naphthalene.

Table 2 Enantioselective Heck reaction with the aryl triflates ${\bf 4, 6a-d}$ and the alkenyl triflate ${\bf 8}$

Entry	R	Substrate	Product	t/h	Yield (%)	Ee (%) ^a				
1	Н	4	5a	18	84	91				
2	Cl	6a	7a	18	87	94				
3	MeO	6b	7b	18	84	90				
4	CN	6c	7c	24	91	96				
5	MeCO	6d	7d	24	93	95				
6	_	8	9	13	76	86				
^a Determined by chiral GC.										

described by Hayashi,⁷ Pfaltz,⁹ Pregosin⁸ and Shibasaki⁵ with the special advantage of high reactivity.

The work was supported by the Deutsche Forschungsgemeinschaft (SFB 416) and the Fonds der Chemischen Industrie. We thank the Degussa AG for a generous gift of precious metals and Dr S. Console, Chemi SpA, Italy, for a gift of the ligands.

Notes and references

† Typical experimental procedure: A mixture of Pd_2dba_3 -dba (7.6 mg, 6.63 μ mol, 3 mol%), (*R*)-BITIANP 1 (16.8 mg, 26.5 μ mol, 12 mol%) and

1,8-bis(dimethylamino)naphthalene (142.1 mg, 0.663 mmol, 3 equiv.) in dry and degassed DMF (5 ml) was stirred for 0.5 h at 40 °C until an orange solution was formed. Then 4 (50.0 mg, 0.221 mmol) and 3 (77.5 mg, 1.105 mmol, 5 equiv.) were added and the mixture was stirred for 18 h at 90 °C until the reaction was complete [GC analysis; SGE BPX-5% phenyl (equiv.) polysilphenylene-siloxane, 50 m, 60–160 °C, 5 °C min⁻¹, 50 kPa: $t_R = 8.8$ $\min (\mathbf{4}), t_{\mathbf{R}} = 15.1 \min (\mathbf{5a})$]. The red solution was filtered through a batch of silica gel, eluted with Et₂O (100 ml), concentrated, diluted with the same volume of water and extracted with Et₂O (3 \times 30 ml). The organic layers were combined, washed with water and brine and dried over Na2SO4. Removal of the solvent in vacuo and purification of the residue by column chromatography (silica gel, 2 × 25 cm, light petroleum-CH₂Cl₂ 3:1) gave (R)-(-)-5a (27.0 mg, 84%) as a colourless oil, $[\alpha]_D$ -61.5 (c 2.30, CHCl₃, 20 °C, 91% ee according to GC). GC [octakis(6-O-methyl-2,3-di-Opentyl)-y-cyclodextrin (50% in OV 1701 w/w), 25 m, 70-100 °C, 1 °C \min^{-1} , 50 kPa]: 13.1 min (S)-5a, 14.4 min (R)-5a.

- Reviews: M. Shibasaki, C. D. J. Boden and A. Kojima, Tetrahedron, 1997, 53, 7371; E. Negishi, C. Coperet, S. Ma, S.-Y. Liou and F. Liu, Chem. Rev., 1996, 96, 365; W. Cabri and I. Candiani, Acc. Chem. Res., 1995, 28, 2; A. de Meijere and F. E. Meyer, Angew. Chem., Int. Ed. Engl., 1994, 33, 2379; H.-G. Schmalz, Nachr. Chem. Tech. Lab., 1994, 42, 270; R. F. Heck, Palladium Reagents in Organic Synthesis, Academic Press, London, 1985.
- 2 Y. Sato, M. Sodeoka and M. Shibasaki, J. Org. Chem., 1989, 54, 4738.
- 3 N. E. Carpenter, D. J. Kucera and L. E. Overman, J. Org. Chem., 1989, 54, 5846.
- L. F. Tietze and T. Raschke, *Liebigs Ann. Chem.*, 1996, 1981; L. F. Tietze and T. Raschke, *Synlett*, 1995, 597; T. Ohshima, K. Kagechika, M. Adachi, M. Sodeoka and M. Shibasaki, *J. Am. Chem. Soc.*, 1996, 118, 7108; L. E. Overman, *Pure Appl. Chem.*, 1994, 66, 1423.
- 5 S. Y. Cho and M. Shibasaki, Tetrahedron Lett., 1998, 39, 1773.
- 6 P. Antognazza, T. Benincori, E. Brenna, E. Cesarotti, L. Trimarco and F. Sannicolò, EP 0770085 to Chemi SpA (*Chem. Abstr.*, 1996, **124**, 317487w); T.Benincori, E. Brenna, F. Sannicolò, L. Trimarco, P. Antognazza, E. Cesarotti, F. Demartin and T. Pilati, *J. Org. Chem.*, 1996, **61**, 6244.
- 7 F. Ozawa, A. Kubo, Y. Matsumoto and T. Hayashi, *Organometallics*, 1993, 12, 4188; F. Ozawa, Y. Kobatake and T. Hayashi, *Tetrahedron Lett.*, 1993, 34, 2505.
- 8 G. Trabesinger, A. Albinati, N. Feiken, R. W. Kunz, P. S. Pregosin and M. Tschoerner, J. Am. Chem. Soc., 1997, 119, 6315.
- O. Loiseleur, M. Hayashi, N. Schmees and A. Pfaltz, Synthesis, 1997, 1338; O. Loiseleur, P. Meier and A. Pfaltz, Angew. Chem., Int. Ed. Engl., 1996, 35, 200.
- 10 For further investigations about Heck reactions with dihydrofurans, see K. K. Hii, T. D. W. Claridge and J. M. Brown, Angew. Chem., Int. Ed. Engl., 1997, 109, 984; S. Hillers and O. Reiser, Chem. Commun., 1996, 2197; S. Hillers, S. Sartori and O. Reiser, J. Am. Chem. Soc., 1996, 118, 2087.

Communication 9/05309C